Расчёт теплопотерь частного дома с примерами
Содержание:
- Online программа расчета теплопотерь дома
- Дифференцированные схемы расчёта
- Расчет теплопотери помещения в онлайн-режиме
- Укрупненный расчет
- Расчет потерь тепла в тепловых сетях
- Понятие сопротивления теплопередаче
- Учет тепла на подогрев воздуха
- Расчет теплопотерь
- Теплопотери стен
- Формулы расчета тепловых потерь
- Формула расчета теплопотерь частного дома
- Понятие сопротивления теплопередаче
- Замечания и выводы.
Online программа расчета теплопотерь дома
Выберите город tнар = – o C
Введите температуру воздуха в помещении; tвн = + o C
Теплопотери через стены развернуть свернуть
Вид фасада α =
Площадь наружных стен, кв.м.
Материал первого слоя λ =
Толщина первого слоя, м.
Материал второго слоя λ =
Толщина второго слоя, м.
Материал третьего слоя λ =
Толщина третьего слоя, м.
Теплопотери через стены, Вт
Теплопотери через окна развернуть свернуть
Введите площадь окон, кв.м.
Теплопотери через окна
Теплопотери через потолки развернуть свернуть
Выберите вид потолка
Введите площадь потолка, кв.м.
Материал первого слоя λ =
Толщина первого слоя, м.
Материал второго слоя λ =
Толщина второго слоя, м.
Материал третьего слоя λ =
Толщина третьего слоя, м.
Теплопотери через потолок
Теплопотери через пол развернуть свернуть
Выберите вид пола
Введите площадь пола, кв.м.
Материал первого слоя λ =
Толщина первого слоя, м.
Материал второго слоя λ =
Толщина второго слоя, м.
Материал третьего слоя λ =
Толщина третьего слоя, м.
Теплопотери через пол
Материал первого слоя λ =
Толщина первого слоя, м.
Материал второго слоя λ =
Толщина второго слоя, м.
Материал третьего слоя λ =
Толщина третьего слоя, м.
Площадь зоны 1, кв.м. что такое зоны?
Площадь зоны 2, кв.м.
Площадь зоны 3, кв.м.
Площадь зоны 4, кв.м.
Теплопотери через пол
Теплопотери на инфильтрацию развернуть свернуть
Введите Жилую площадь, м.
Теплопотери на инфильтрацию
О программе развернуть свернуть
Очень часто на практике принимают теплопотери дома из расчета средних около 100 Вт/кв.м. Для тех, кто считает деньги и планирует обустроить дом экономной системой отопления без лишних капиталовложений и с низким расходом топлива, такие расчеты не подойдут. Достаточно будет сказать, что теплопотери хорошо утепленного дома и неутепленного могут отличаться в 2 раза. Точные расчеты по СНиП требуют большого времени и специальных знаний, но эффект от точности не ощутится должным образом на эффективности системы отопления.
Данная программа разрабатывалась с целью предложить лучший результат цена/качество, т.е. (затраченное время)/(достаточная точность).
03.12.2017 – скорректирована формула расчета теплопотерь на инфильтрацию. Теперь расхождений с профессиональными расчетами проектировщиков не обнаружено (по теплопотерям на инфильтрацию).
10.01.2015 – добавлена возможность менять температуру воздуха внутри помещений.
FAQ развернуть свернуть
Как посчитать теплопотери в соседние неотапливаемые помещения?
По нормам теплопотери в соседние помещения нужно учитываеть, если разница температур между ними превышает 3 o C. Это может быть, например, гараж. Как с помощью онлайн-калькулятора посчитать эти теплопотери?
Пример. В комнате у нас должно быть +20, а в гараже мы планируем +5. Решение. В поле tнар ставим температуру холодной комнаты, в нашем случае гаража, со знаком “-“. -(-5) = +5 . Вид фасада выбираем “по умолчанию”. Затем считаем, как обычно.
Внимание! После расчета потерь тепла из помещения в помещение не забываем выставлять температуры обратно. Обсудить эту статью, оставить отзыв в Google+ | Facebook
Обсудить эту статью, оставить отзыв в Google+ | Facebook
Дифференцированные схемы расчёта
Для правильных вычислений надо учитывать специфику типовых компонентов строений. Потери в стенах рассчитывают по общей площади с учетом сопротивления (теплового) каждого слоя. Внутри помещений поддерживают необходимую температуру. Проверяют несколько контрольных точек с учетом изменения сезонных, дневных и ночных внешних условий. Одновременно оценивают размещение точки росы. Следует не забывать о существенном влиянии ветровых нагрузок, особенностях режима проветривания. Над перекрытиями находятся верхние этажи, чердак. Соответственно, при общем одинаковом подходе некоторые негативные внешние воздействия можно исключить.
К сведению. Специалисты рекомендуют делать небольшой запас (добавить ≈10%) при выборе уровня влажности и температуры в комнате. Такой подход поможет учесть экстремальные условия (потребности) в процессе эксплуатации.
Расчетные параметры для оконных (дверных) блоков приводят производители в сопроводительной документации. Для повышения точности следует учитывать изоляционные характеристики откосов, узлов примыкания рам к стенам.
Пол в центральной части теплее, по сравнению с периметром. Влияние оказывают вентилируемый подвал, дополнительная изоляция фундамента. Применяют зонирование, которое учитывает особенности отдельных площадей.
Расчет теплопотери помещения в онлайн-режиме
В интернете есть множество сайтов, предлагающих услугу онлайн-расчета теплопотери здания в режиме реального времени. Калькулятор представляет собой программу со специальной формой для заполнения, куда вы введете свои данные и после автоматического проведения подсчета увидите результат – цифру, которая и будет означать количество выхода тепла из жилого помещения.
Жилое помещение – это постройка, в которой проживают в течение всего отопительного сезона. Как правило, дачные строения, где отопительная система работает периодически и по необходимости, к категории жилых строений не относятся. Чтобы провести переоснащение и достичь оптимального режима теплообеспечения, придется провести ряд работ и по необходимости увеличить мощность системы отопления. Такое переоснащение может затянуться на длительный период. В целом весь процесс зависит от конструктивных особенностей дома и показателей увеличения мощности системы отопления.
Многие даже не слышали о существовании такого понятия, как «теплопотери дома», и впоследствии, сделав конструктивно правильный монтаж отопительной системы, всю жизнь мучаются от недостатка или избытка тепла в доме, даже не догадываясь об истинной причине
Именно поэтому так важно учитывать каждую деталь при проектировании жилища, заниматься лично контролем и построением, чтобы в итоге получить качественный результат. В любом случае жилище, независимо от того, из какого материала оно строится, должно быть комфортным
А такой показатель, как теплопотеря строения жилого характера, поможет сделать пребывание дома еще приятнее.
Укрупненный расчет
Выше описана методика точного подсчета теплопотерь, однако далеко не все используют данную формулу, зачастую обыватели довольствуются усредненными данными, уже посчитанными для помещения высотой потолков до 3 метров. Укрупненный расчет производят исходя из значения 100 Вт/1 квадратный метр помещения. Соответственно дома площадью 100 м2 необходимо обеспечить отопительную систему мощностью примерно 10 000 Вт.
Подобные расчеты являются достаточно усредненными. Учитывая, что в нашей стране большая вариативность климатических зон, использовать такой расчет нецелесообразно. При недостаточной мощности, дом не будет достаточно хорошо прогреваться, а при избыточной — ресурсы будут расходоваться впустую.
Расчет потерь тепла в тепловых сетях
Различают два вида потерь в тепловых сетях: с тепловыделением и от утечек теплоносителя, которые определяются конструкцией сети, ее состоянием и условиями эксплуатации.
Потери с тепловыделением. Существующие нормы потерь тепла в трубопроводах определяются значениями среднегодовых температур теплоносителя и окружающей среды.
Значения удельных потерь тепла при максимальных и других заданных температурах теплоносителя и соответствующей температуре окружающей среды определяют по формуле (4.1)
q1 = , ккал/(ч м), (4.1)
где q1норм — нормы потери тепла на 1 м теплопровода в зависимости от диаметра, способа прокладки и теплоносителя (определяются по прил. 5 и 6) при среднегодовой температуре теплоносителя tcp, ккал/(ч м);
q1 – удельные потери тепла 1 м теплопровода при заданной температуре теплоносителя t, ккал/(ч м);
tокр. ср. г – среднегодовая температура окружающей среды, при которой заданы нормы потерь тепла, °С;
tокр. ср – фактическая среднегодовая температура окружающей среды, °С.
При подземных прокладках в непроходных каналах температура окружающей среды принимается равной температуре воздуха в канале.
При подземной бесканальной прокладке температура окружающей среды равна температуре грунта на глубине заложения трубопровода. При надземной прокладке температура окружающей среды равна температуре наружного воздуха.
Температурный расчетный (максимальный) график подачи теплоносителя от ЦТП и котельных для прямых и обратных магистралей равен соответственно:
tподтн рас = 95 °С и tобртн рас = 70 °С.
Температурный график среднегодовых температур подачи теплоносителя для прямых и обратных магистралей равен соответственно:
tподтн ср = 59 °С и tобртн ср = 47 °С.
Для трубопроводов надземной прокладки температура окружающей среды, при которой заданы нормы потерь тепла, равна среднегодовой температуре окружающей среды за отопительный период.
Для трубопроводов подземной прокладки в непроходных каналах температура окружающей среды, при которой заданы нормы потерь тепла, принимается равной:
tпкокр. ср. г =
Для трубопроводов подземной не канальной прокладки температура, при которой заданы нормы потерь тепла, равна среднегодовой температуре грунта и составляет для средней полосы России (на глубине 0,8 м):
tпбокр. ср. г = °С.
Расчетные (минимальные) температуры окружающей среды равняются:
для трубопроводов надземной прокладки
для трубопроводов подземной прокладки в непроходных каналах
tнокр.ср = 40 °С; tпкокр. рас =
для трубопроводов подземной бесканальной прокладки
(средняя зимняя температура грунта на глубине 0,8 м).
С учетом вышеизложенного, формулы для определения потерь тепла тепловыделением приведены в прил. 7.
Для расчета максимальных часовых потерь используются максимальные удельные потери q1макс, для расчета средних часовых потерь -средние удельные потери qlcp.
Таким образом, исходными данными для расчета потерь тепла тепловыделением рассматриваемых сетей являются удельные потери тепла и суммарные длины участков трасс с учетом способов прокладки.
Потери тепла с утечкой теплоносителя. Среднечасовая величина утечки за год принимается равной 0,25% от объема воды в трубопроводах тепловой сети и присоединенных к ним местных систем отопления зданий. Расчетная (максимальная) часовая величина утечки, учитывая возможные колебания в течение года в зависимости от режима работы системы, принимается равной 0,5% от всего объема теплоносителя. Объем воды в трубопроводах тепловой сети определяется в зависимости от их протяженности и диаметра по сводной специфики. Удельный объем воды в трубопроводах в зависимости от диаметра приведен в прил. 8. Для трубопровода с другим диаметром удельный объем можно определить по выражению
V1тр = , м3/км, (4.2)
Ду – условный диаметр, мм.
Удельный объем воды в системах отопления зданий по всему объекту на 1 Гкал/ч суммарного расчетного расхода тепла принимается равным:
для жилых районов – 30 м ;
для промышленных предприятий – 15 м3.
Годовые потери тепла с тепловыделением и утечкой за отопительный сезон, Гкал, рассчитываются по формуле
= ( + ) tот 20 10-6 (4.3)
где tот – продолжительность отопительного сезона.
Понятие сопротивления теплопередаче
Способность того или иного материала передавать тепло называется теплопроводностью. В общем случае она всегда выше, чем больше плотность вещества и чем лучше его структура приспособлена для передачи кинетических колебаний.
Сравнение энергоэффективности различных строительных материалов
Величиной, обратно пропорциональной тепловой проводимости, является термическое сопротивление. У каждого материала это свойство принимает уникальные значения в зависимости от структуры, формы, а также ряда прочих факторов. Например, эффективность передачи тепла в толще материалов и в зоне их контакта с другими средами могут отличаться, особенно если между материалами есть хотя бы минимальная прослойка вещества в другом агрегатном состоянии. Количественно термическое сопротивление выражается как разница температур, разделённая на мощность теплового потока:
Rt = (T2 – T1) / P
где:
- Rt — термическое сопротивление участка, К/Вт;
- T2 — температура начала участка, К;
- T1 — температура конца участка, К;
- P — тепловой поток, Вт.
В контексте расчёта теплопотерь термическое сопротивление играет определяющую роль. Любая ограждающая конструкция может быть представлена как плоскопараллельная преграда на пути теплового потока. Её общее термическое сопротивление складывается из сопротивлений каждого слоя, при этом все перегородки складываются в пространственную конструкцию, являющуюся, собственно, зданием.
Rt = l / (λ·S)
где:
- Rt — термическое сопротивление участка цепи, К/Вт;
- l — длина участка тепловой цепи, м;
- λ — коэффициент теплопроводности материала, Вт/(м·К);
- S — площадь поперечного сечения участка, м2.
Учет тепла на подогрев воздуха
Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо
Рассчитать вентиляционные теплопотери дома можно через теплоемкость воздуха с помощью популярной формулы из курса физики:
Qвозд = cm (tв — tн). В ней:
- Qвозд — тепло, расходуемое системой отопления на прогрев приточного воздуха, Вт;
- tв и tн — то же, что в первой формуле, °С;
- m — массовый расход воздуха, попадающего в дом снаружи, кг;
- с — теплоемкость воздушной смеси, равна 0.28 Вт / (кг °С).
Здесь все величины известны, кроме массового расхода воздуха при вентиляции помещений. Чтобы не усложнять себе задачу, стоит согласиться с условием, что воздушная среда обновляется во всем доме 1 раз в час. Тогда объемный расход воздуха нетрудно посчитать путем сложения объемов всех помещений, а затем нужно перевести его в массовый через плотность. Поскольку плотность воздушной смеси меняется в зависимости от его температуры, нужно взять подходящее значение из таблицы:
Температура воздушной смеси, ºС | — 25 | — 20 | — 15 | — 10 | — 5 | + 5 | + 10 | |
Плотность, кг/м3 | 1,422 | 1,394 | 1,367 | 1,341 | 1,316 | 1,290 | 1,269 | 1,247 |
Пример. Необходимо просчитать вентиляционные теплопотери здания, куда поступает 500 м³ в час с температурой -25°С, внутри поддерживается +20°С. Сначала определяется массовый расход:
m = 500 х 1,422 = 711 кг/ч
Подогрев такой массы воздуха на 45°С потребует такого количества теплоты:
Qвозд = 0.28 х 711 х 45 = 8957 Вт, что примерно равно 9 кВт.
По окончании расчетов результаты тепловых потерь сквозь наружные ограждения суммируются с вентиляционными теплопотерями, что дает общую тепловую нагрузку на систему отопления здания.
Представленные методики вычислений можно упростить, если формулы ввести в программу Excel в виде таблиц с данными, это существенно ускорит проведение расчета.
Расчет теплопотерь
Вот как следует производить вычисления:
Теплопотери через ограждающие конструкции
Для каждого материала, входящего в состав ограждающих конструкций, в справочнике или предоставленном производителем паспорте находим значение коэффициента теплопроводности Кт (единица измерения — Вт/м*градус).
Для каждого слоя ограждающих конструкций определяем термическое сопротивление по формуле: R = S/Кт, где S – толщина данного слоя, м.
Для многослойных конструкций сопротивления всех слоев нужно сложить.
Определяем теплопотери для каждой конструкции по формуле Q = (A / R) *dT,
Где:
- А — площадь ограждающей конструкции, кв. м;
- dT — разность наружной и внутренней температур.
- dT следует определять для самой холодной пятидневки.
Теплопотери через вентиляцию
Для этой части расчета необходимо знать кратность воздухообмена.
В жилых зданиях, возведенных по отечественным стандартам (стены являются паропроницаемыми), она равна единице, то есть за час должен обновиться весь объем воздуха в помещении.
В домах, построенных по европейской технологии (стандарт DIN), при которой стены изнутри застилаются пароизоляцией, кратность воздухообмена приходится увеличивать до 2-х. То есть за час воздух в помещении должен обновиться дважды.
Теплопотери через вентиляцию определим по формуле:
Qв = (V*Кв / 3600) * р * с * dT,
Где
- V — объем помещения, куб. м;
- Кв — кратность воздухообмена;
- Р — плотность воздуха, принимается равной 1,2047 кг/куб. м;
- С — удельная теплоемкость воздуха, принимается равной 1005 Дж/кг*С.
Приведенный расчет позволяет определить мощность, которую должен иметь теплогенератор системы отопления. Если она оказалась слишком высокой, можно сделать следующее:
- понизить требования к уровню комфорта, то есть установить желаемую температуру в наиболее холодный период на минимальной отметке, допустим, в 18 градусов;
- на период сильных холодов понизить кратность воздухообмена: минимально допустимая производительность приточной вентиляции составляет 7 куб. м/ч на каждого обитателя дома;
- предусмотреть организацию приточно-вытяжной вентиляции с рекуператором.
Заметим, что рекуператор полезен не только зимой, но и летом: в жару он позволяет сэкономить произведенный кондиционером холод, хотя и работает в это время не столь эффективно, как в мороз.
Правильнее всего при проектировании дома выполнить зонирование, то есть назначить для каждого помещения свою температуру исходя из требуемого комфорта. К примеру, в детской или комнате пожилого человека следует обеспечить температуру порядка 25-ти градусов, тогда как для гостиной будет достаточно и 22-х. На лестничной площадке или в помещении, где жильцы появляются редко либо имеются источники тепловыделения, расчетную температуру можно вообще ограничить 18-ю градусами.
Очевидно, что цифры, полученные в данном расчете, актуальны только для очень короткого периода — самой холодной пятидневки. Чтобы определить общий объем энергозатрат за холодный сезон, параметр dT нужно вычислять с учетом не самой низкой, а средней температуры. Затем нужно выполнить следующее действие:
W = ((Q + Qв) * 24 * N)/1000,
Где:
- W — количество энергии, требующейся для восполнения теплопотерь через ограждающие конструкции и вентиляцию, кВт*ч;
- N — количество дней в отопительном сезоне.
Однако, данный расчет окажется неполным, если не будут учтены потери тепла в канализационную систему.
Теплопотери через канализацию
Для приема гигиенических процедур и мытья посуды жильцы дома греют воду и произведенное тепло уходит в канализационную трубу.
Но в данной части расчета следует учитывать не только прямой нагрев воды, но и косвенный — отбор тепла осуществляет вода в бачке и сифоне унитаза, которая также сбрасывается в канализацию.
Исходя из этого, средняя температура нагрева воды принимается равной всего 30-ти градусам. Теплопотери через канализацию рассчитываем по следующей формуле:
Qк = (Vв * T * р * с * dT) / 3 600 000,
Где:
- Vв — месячный объем потребления воды без разделения на горячую и холодную, куб. м/мес.;
- Р — плотность воды, принимаем р = 1000 кг/куб. м;
- С — теплоемкость воды, принимаем с = 4183 Дж/кг*С;
- dT — разность температур. Учитывая, что вода на входе зимой имеет температуру около +7 градусов, а среднюю температуру нагретой воды мы условились считать равной 30-ти градусам, следует принимать dT = 23 градуса.
- 3 600 000 — количество джоулей (Дж) в 1-м кВт*ч.
Теплопотери стен
Qcт=Kст*Fст(tвнут-tвнеш), где
- Kст – коэффициент теплопроводности материала, °С м2/Вт;
- Fст – площадь стены, м2;
- tвнут – температура внутри помещения, °С;
- tвнеш – температура снаружи, °С.
Стены дома непосредственно контактируют с внешней средой, поэтому при правильной постройке большая часть тепла будет уходить именно через них. Помимо материала на теплопотери за счет стен влияет внутренняя и наружная отделка, количество слоев стены и их теплопроводность, толщина стены. Слабыми местами в стеновых потерях являются потери на швы между панелями, различные технологические отверстия.
Для того чтобы сократить потери необходимо между слоями стены создать воздушную прослойку или прослойку, утепленную пористым утеплителем, так как воздух плохо проводит тепло и помогает сохранить его в помещении. Технологические отверстия также следует обкладывать утеплителем, для лучшего сохранения тепла.
Формулы расчета тепловых потерь
Для расчета потерь теплоты через ограждающие конструкции помещений используют законченную формулу из СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:
Q = S × ((tв – tн) / R)
- S – площадь помещения, м2;
- tв – температура внутренняя, °С;
- tн – температура наружная, °С;
- R – термическое сопротивление материала, (м2 × °С)/Вт.
Для расчета общего термического сопротивления стен дополнительно применяются поправочные коэффициенты:
Rобщ = Rм + Rв + Rн
- Rм – термическое сопротивление материала, Вт/(м2 × °С);
- Rв – термическое сопротивление внутренней поверхности стены, Вт/(м2 × °С);
- Rн – термическое сопротивление наружной поверхности стены, Вт/(м2 × °С).
В свою очередь, показатели термического сопротивления равны:
Rм = L / λ
Rв = 1 / αв
Rн = 1 / αн
- L – толщина материала, м;
- λ – теплопроводность материала, Вт/(м × °С)
- αв – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м2 × °С);
- αн – коэффициент теплоотдачи наружной поверхности ограждающей конструкции, Вт/(м2 × °С).
Все параметры подбираются согласно СНиП II-3-79* «Строительная теплотехника».
Теплопотери для многослойных стен рассчитываются аналогичным образом, за исключением того, что значение суммарного термического сопротивление складывается для каждого слоя:
Rобщ = Rв + R1 + R2 + .. + Rн
Иным способом производится расчет тепловых потерь на инфильтрацию, формулу можно найти в СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование»:
Qi = 0.28 × Gi × c × (tв – tн) × k
- Gi – расход воздуха, м3/ч;
- c – удельная теплоемкость воздуха, 1.006 кДж/(кг × °С)
- tв – температура внутренняя, °С;
- tн – температура наружная, °С;
- k – коэффициент учета влияния встречного теплового потока в конструкциях (по умолчанию 0.8).
Расход удаляемого воздуха Gi, не компенсируемый приточным воздухом определяется следующим образом:
Gi = 3 × S
- 3 – норма воздухообмена для жилых квартир, м3/ч (по СНиП 2.08.01-89* «Жилые здания»);
- S – площадь помещения, м2.
Формула расчета теплопотерь частного дома
Суммарные тепловые потери вычисляются по формуле из основных и добавочных теплопотерь (с округлением до 10 Вт).
В формуле теплопотери используются следующие величины:
- К — коэффициент теплопередачи (таблица «К — коэффициент теплопередачи»);
- F — площадь стен (в м2);
- R — сопротивление теплопередаче (ккал/м2 х ч х °C);
- tв и tп — температура внутри и снаружи помещения;
- n — коэффициент уменьшения, учитывает теплопотери в зависимости от типа ограждений (таблица « n — коэффициент уменьшения»).
Значения R отличаются в зависимости от вида ограждающих конструкций (таблица « Значения R0 и 1/R0»).
Понятие сопротивления теплопередаче
Описанные выше явления не зависят от материалов. Это значит, что после соединения двух изделий (нагретого и охлажденного) постепенно температура их станет одинаковой. Однако скорость процесса будет отличаться.
Понятие теплопроводности поясняет простой эксперимент
Особенности освещения дома светодиодными лампами
Комбинированный пруток из меди/ стали фиксируют горизонтально. К нижней части на клейком воске прикрепляют контрольные грузы. При нагреве центральной части они отсоединяются неравномерно, что наглядно демонстрирует разную теплопроводность.
Обратное понятие, определяющее изоляционные свойства материала, называют термическим сопротивлением (Rт). Количественные параметры указывают в кельвинах на ватты. Для расчета применяют формулу Rт=(Т2-Т1)/Р, где:
- Т2 и Т1 – температура области нагрева и другого торца, соответственно;
- Р – перемещающийся по изделию тепловой поток.
При одинаковом сечении Rт можно вычислить, разделив длину всего участка на произведение специального коэффициента (λ) и площади сечения.
К сведению. Кельвины переводят в градусы Цельсия, вычитая постоянное число 275,15. 300 К-275,15=26,85°C.
Теплопроводность разных материалов
Вещество, изделие | Коэфф. теплопроводности, Вт/(м*К) |
Графит | 278-2435 |
Медь | 401 |
Алюминий (сплавы) | 201-248 |
Железо | 92 |
Нержавеющая сталь | 15 |
Гранит | 2,4-3,2 |
Базальт | 1,1-1,5 |
Вода при комнатной температуре | 0,6 |
Кирпич | 0,18-0,65 |
Блоки из пенобетона | 0,1-0,3 |
Дерево | 0,14-0,16 |
Маты из каменной ваты | 0,033-0,04 |
Панель из пенополистирола | 0,034-0,041 |
Воздух | 0,022 |
Замечания и выводы.
Теплопотери здания через пол и стены в грунт, полученные по двум различным методикам существенно разнятся. По алгоритму А.Г. Сотникова значение QΣ=16,146 КВт, что почти в 5 раз больше, чем значение по общепринятому «зональному» алгоритму — QΣ=3,353 КВт!
Дело в том, что приведенное термическое сопротивление грунта между заглубленными стенами и наружным воздухом R27=0,122 м2·°С/Вт явно мало и навряд ли соответствует действительности. А это значит, что условная толщина грунта δусл определяется не совсем корректно!
К тому же «голый» железобетон стен, выбранный мной в примере — это тоже совсем нереальный для нашего времени вариант.
Внимательный читатель статьи А.Г. Сотникова найдет целый ряд ошибок, скорее не авторских, а возникших при наборе текста. То в формуле (3) появляется множитель 2 у λ, то в дальнейшем исчезает. В примере при расчете R17 нет после единицы знака деления. В том же примере при расчете потерь тепла через стены подземной части здания площадь зачем-то делится на 2 в формуле, но потом не делится при записи значений… Что это за неутепленные стены и пол в примере с Rст=Rпл=2 м2·°С/Вт? Их толщина должна быть в таком случае минимум 2,4 м! А если стены и пол утепленные, то, вроде, некорректно сравнивать эти теплопотери с вариантом расчета по зонам для неутепленного пола.
Но самый главный вопрос автору (или редакции журнала) касается формулы (3) и графика:
R27=δусл/(2*λгр)=К(cos((hH)*(π/2)))/К(sin((hH)*(π/2)))
Насчет вопроса, относительно присутствия множителя 2 у λгр было уже сказано выше.
Я поделил полные эллиптические интегралы друг на друга. В итоге получилось, что на графике в статье показана функция при λгр=1:
δусл= (½)*К(cos((hH)*(π/2)))/К(sin((hH)*(π/2)))
Но математически правильно должно быть:
δусл= 2*К(cos((hH)*(π/2)))/К(sin((hH)*(π/2)))
или, если множитель 2 у λгр не нужен:
δусл= 1*К(cos((hH)*(π/2)))/К(sin((hH)*(π/2)))
Это означает, что график для определения δусл выдает ошибочные заниженные в 2 или в 4 раза значения…
Выходит пока всем ничего другого не остается, как продолжать не то «считать», не то «определять» теплопотери через пол и стены в грунт по зонам? Другого достойного метода за 80 лет не придумали. Или придумали, но не доработали?!
Прошу уважающихтруд автора скачивать файл с программами расчетовпосле подписки на анонсы статей!
Ссылка на скачивание файла:
teplopoteri-cherez-pol-i-steny-v-grunt (xls 80,5KB)