Древесина дуба

Область использования легкого древа

Самой легкой древесиной является бальза. Она относится к семейству мальвовых и произрастает в Южной Америке. Из этого сырья был построен плот норвежского путешественника, на котором он совершил путь через тихий океан. Сверхлегкая древесина используется в авиационной промышленности в качестве материала для звуко- и теплоизоляции.

Применяется бальза в судостроении и судомоделировании. Сырье ложится в основу досок для серфинга. Используется для изготовления:

· макетов;

· декораций;

· оборудования для спасения на водах;

· поплавков.

Легкость обусловлена быстротой роста. К пяти годам дерево становится взрослым. Крупные растения обладают прочной и легкой древесиной, которая считается самой легкой в высушенном состоянии. В свежесрубленном виде древесина тяжелая, так как содержит до 95 % воды. Материал быстро высыхает и становится плотным, довольно крепким и легким. При сравнении с популярной сосной конструкции из бальзы получаются более прочными, жесткими и легкими.

Бальза легко поддается обработке, но требует для этого специального инструмента с малым углом заострения и тонким лезвием. Окрашиванию детали из древесины подаются плохо, что особенно касается красок и лаков. Возможно использование смеси и на водной основе или составов в виде спиртовых протрав.

Усушка, разбухание и коробление древесины

  Усушка — это уменьшение объёма древесины и линейных размеров при удалении из неё связанной влаги. Удаление свободной влаги не вызывает усушки. Она начинается только после полного удаления свободной влаги в момент начала удаления влаги связанной. Чем больше клеточных стенок в единице объёма древесины, тем больше в ней связанной воды и выше усушка.Усушка древесины не одинакова в разных направлениях: в тангенциальном направлении в 1,5 — 2 раза больше чем в радиальном.

  В среднем линейная усушка древесины наиболее большинства пород в тангенциальном направлении составляет 8 — 10 %, в радиальном 3 — 7 %, а вдоль волокон 0,1 — 0,3 %. Полная объёмная усушка находится в пределах 11 — 17 %. Усушка древесины учитывается при распиловке брёвен на доски (припуски на усадку), при сушке пиломатериалов и т.д.

  При сушке в древесине, вне зависимости от участия внешних нагрузок, возникают внутренние напряжения. Они образуются в результате неодинаковых изменений объёма тела при сушке (сушильные напряжения), пропитке и в процессе роста дерева. Полные сушильные напряжения удобно представить, как совокупность двух составляющих — влажностных и остаточных напряжений.

  Влажностные напряжения вызваны неоднородной усушкой материала. В поверхностных слоях древесины, где влажность ниже, чем в центре, из-за стеснения свободной усушки возникают растягивающие напряжения, а во внутренних — сжимающие. Остаточные напряжения обусловлены появлением в древесине неоднородных остаточных деформаций. Остаточные напряжения, в отличие от влажностных, не исчезают при выравнивании влажности в доске и наблюдаются как во время сушки, так и после её полного завершения.

  Если растягивающие напряжения достигают предела прочности древесины на растяжение поперёк волокон, появляются трещины. Так появляются поверхностные трещины в начале сушки и внутренние в конце сушки.

  Наличие различных напряжений внутри древесины может привести к её короблению.

  Коробление — это изменение формы древесины при сушке, хранении, и выпиловке. Чаще всего коробление происходит из-за различной степени усушки по разным структурным направлениям. Коробление может возникать и при механической обработке сухих пиломатериалов: при несимметричном строгании, ребровом делении из-за нарушения равновесия остаточных напряжений.

  Разбухание — это увеличение линейных размеров и объёмов древесины при повышении содержания связанной влаги. Оно происходит при увлажнении древесины и представляет собой явление, обратное усушке. Разбухание наблюдается при увеличении влажности до предела гигроскопичности. Наибольшее разбухание происходит по ширине волокон (тангенциально), наименьшее – вдоль волокон.

  Разбухание, также как и усушка — отрицательные свойства древесины. Однако в некоторых случаях оно играет положительную роль, например, обеспечивает плотность соединений в лодках или винных бочках.

Дуб

Его плотность – около 750 килограммов на метр кубический. Влагостойкость дуба настолько высока, что, например, паркет из него можно укладывать абсолютно в любых помещениях — от балкона до ванной комнаты. Эта порода, в отличие от многих других, еще и устойчива к появлению грибка и плесени.

Показатель твердости дуба по Бринеллю – 3,7 – довольно высокий. То есть изделия из этого материала будут готовы к большим нагрузкам — лестница и паркет, например, не только выдержат массивную мебель, но и останутся очень стойкими к механическим повреждениям.

Эстетические качества дуба – тоже на высоте: есть множество как темных, так и светлых оттенков. Структура – равномерная. Безусловно, эта порода способна облагородить любой интерьер.

Из недостатков можно отметить только трудности в обращении с такой твердой породой. Укладывать, например, паркет из дуба – сложный процесс, который сложно реализовать без определенных профессиональных навыков и опыта. В остальном эту породу древесины можно по праву назвать одной из лучших.

В любом случае, вложение в дубовый интерьер точно будет оправдано, ведь мебель и предметы декора из этого материала вполне смогут претендовать на семейную реликвию – они будут служить вам веками, а великолепная текстура порадует не одно поколение. На благородном интерьере можно и немного сэкономить, если использовать сращенные дубовые щиты, а не цельноламельные.

Строение дерева. От клеток до корней

В этой статьей мы решили напомнить, что из себя представляет дерево, и рассказать о каждой из его частей: клетках и тканях, древесине и коре, ветвях и ветках, листьях и корнях.

У многих пород в древесине выделяется центральная темноокрашенная зона – ядро и наружная светлая – заболонь. В раннем возрасте все деревья состоят только из заболони, но через некоторое время (у всех пород по-разному, и ширина ее также различна) живые элементы начинают отмирать, возникает закупорка водопроводимых путей и отложение экстрактивных веществ в центральную часть ствола – таким образом формируется ядро у пород, называемых ядровыми. К ним, например, относятся: можжевельник, тисс, сосна, лиственница, кедр, дуб, ясень, вяз, ильм, грецкий орех, ива, тополь.

У других пород отмирание центральной части не сопровождается потемнением. Они имеют однородную окраску древесины по всей толщине ствола – такие породы называют безъядровыми.

Различают еще одну разновидность пород – спелодревесные, которые имеют спелую древесину в центральной части ствола (более сухую, чем остальная). Их заболонь одинаковой окраски со спелой древесиной. К ним относятся ель, пихта, бук, осина.

Имеются также породы, у которых центральная часть не отличается от периферической ни по цвету, ни по свойствам, – такие породы называются заболонными. К ним, например, относятся: береза, липа, клен, граб и др.

У некоторых лиственных пород на поперечном разрезе ствола хорошо заметны светлые блестящие линии, расходящиеся по радиусу от сердцевины, – сердцевинные лучи. По радиальным направлениям они видны в форме узких полосок, но чаще незаметны невооруженным глазом. Их можно рассмотреть у дуба, бука, клена и некоторых других пород.

Лиственные породы имеют водопроводящие сосуды, которые проходят вдоль оси ствола в древесине, и на поперечном разрезе заметны только их сечения разной формы. В некоторых породах они крупные и хорошо видны, образуя как бы кольца. Такие породы называют кольцесосудистыми – дуб, ясень, вяз. Породы с мелкими, беспорядочно расположенными со- судами называют рассеяннососудистыми – береза, осина, липа, клен, ольха, бук.

условный предел прочности при смятии поперек волокон

Порода Условный предел прочности, кГ/см2, при смятии Порода Условный предел прочности, кГ/см2. при смятии
радиальном тангенциальном радиальном тангенциальном
Сосна 34 51 Карагач 52 50
Лиственница 44 63 Граб 147 111
Дуб 76 56 Бук 78 52
Ясень 90 99 Клен 112 73
Вяз 51 39 Береза 65 41
Ильм 52 55 Осина 36 29

Древесина пород с широкими или очень многочисленными лучами (дуб, бук, клен, отчасти береза) характеризуется более высоким условным пределом прочности при радиальном смятии (примерно в 1,5 раза); для прочих лиственных пород (с узкими лучами) показатели условного предела прочности при смятии в обоих направлениях практически одинаковы или мало различаются.

Для древесины хвойных пород, наоборот, условный предел прочности при тангенциальном смятии в 1,5 раза выше, чем при радиальном вследствие резкой неоднородности в строении годичных слоев; при радиальном смятии деформируется главным образом более слабая, ранняя, древесина, а при тангенциальном сжатии нагрузка с самого начала воспринимается и поздней древесиной. По сравнению с пределом прочности при сжатии вдоль волокон условный предел прочности при смятии поперек волокон составляет в среднем около 1/8 (от 1/6 для твердых лиственных пород до 1/10 для хвойных и мягких лиственных пород).

Метод Габриэля Янка

Метод измерения твердости Янка отличается от Бринелля тем, что для испытания берется стальной шарик немного большего диаметра (11.28 мм вместо 10 мм по Бринеллю) + замеряют не образовавшуюся в результате падения шарика лунку, а силу, с которой необходимо вдавить шарик в древесину, чтобы он углубился в нее на 50% своего диаметра.

В таблице не приведены диапазоны, в которых находится значение твердости различных видов древесины. Значения по шкале Янка заимствованы из англоязычных источников и соответствуют древесине после атмосферной сушки, ее влажность при этом составляет 12%.

Порода дерева и особенности климатических условий местности, в которой оно растет, в конечном итоге являются определяющими факторами для твердости древесины, поэтому даже внутри одного и того же образца породы бывает колоссальный разброс значений. В Европейских странах и в России твердость обычно указывается в единицах по шкале Бринелля, а в США широко используются данные по шкале Janka.

Свойства и строение
Породы и сорта
Сушка и заготовка
Обработка
Инструменты

Гонкало (Тигровое дерево) Gonkalo (Tiger wood)

Плотность   890   Твердость   5,5   Стабильность   3 

Произрастает  тропическая Южная Америка, которая включает Бразилию, Парагвай и Уругвай. Другие подтипы произрастают от Мексики, Центральной Америки до Венесуэлы, Колумбии, Бразилии и Эквадора.

Гонкало называют еще Астрониумом  Тигровое дерево достигает в высоту 37м с диаметром ствола от 60см до 100см с узкой рельефной комлевой частью в высоту 1.2м-1.8м. Позволяет получить бревно хорошей цилиндрической формы, которые на две третьих высоты не имеют веток. Древесина Заболонь грязно серого цвета или коричневато-белая, шириной от 5 до 10см — резко отличается по цвету от спелой древесины. Ядровая часть древесины имеет золотисто-коричневый цвет переходящий в коричнево-красный с коричневыми, иногда почти черными полосами. Волокна не ровные, обычно волнистые и переплетенные. Древесина имеет чередующиеся полосы твердой и мягкой консистенции, иногда встречается пятнистый рисунок. Текстура как правило тонкая. Древесина имеет от среднего до тусклого глянца на поверхности. . Природная прочность очень высока. Древесина отлично противостоит атакам жуков-вредителей и используется в строительстве кораблей и яхт.

Износостойкость и гибкость древесины

Износостойкость — это способность древесины называется противостоять разрушению в процессе трения. Износ у одной и той же древесины больше с боковой стороны, чем с торцевой. Чем выше твёрдость и плотность древесины, тем меньше её изнашиваемость. Влажная древесина больше подвержена износу – вот почему для декоративных панелей или натуральной половой доски специалисты рекомендуют сухую уборку.

Гибкость — это способность древесины деформироваться под воздействием внешних сил. Технологически операция гнутья (загиба), основана на способности древесины сравнительно легко деформироваться при воздействии изгибающих устройств, особенно в нагретом и влажном состоянии. При охлаждении и сушке под нагрузкой значительная часть упругих деформаций переходит в остаточные, фиксируется новая форма детали. У влажной древесины способность к гнутью выше, чем у сухой.

Наибольшей способностью к гнутью (загибу) обладают лиственные кольце-сосудистые породы деревьев (дуб, ясень) и рассеянно сосудистые (бук, берёза). У хвойных пород эта способность очень невысока.

Способность к гнутью широко используется при изготовлении мебели, предметов интерьера.

Ударная вязкость — это способность древесины поглощать работу при ударе (ударном изгибе) без разрушения и определяется при испытаниях на изгиб. Ударная вязкость у древесины лиственных пород в среднем в 2 раза больше чем у древесины хвойных пород.

Что такое показатель твёрдости и как его измеряют

Твёрдое дерево отлично сопротивляется воздействию других, более плотных тел, например, металлических предметов

Показатель твёрдости имеет важное значение при выборе строительных материалов. Доски для пола и другое деревянное сырьё обязательно должно быть достаточно твёрдым для того, чтобы выдерживать большие нагрузки

С материалом высокой плотности тяжело работать, но при этом твёрдое дерево очень износостойко, что делает его дорогим материалом.

Проверка дерева на прочность происходит в тот момент, когда производится обработка с помощью саморезов, сверла и гвоздей

В зависимости от того, каким образом осуществляется воздействие на доску, показатель прочности может меняться. Самые прочные изделия выдерживают нагрузку с разных сторон: вдоль годичных колец дерева, радиально, с торца и фронтально.

Общепринятый вариант для определения степени прочности и крепости дерева – метод Бринелля

Особенно важное значение этот параметр имеет при выборке паркета для пола. На плотном дереве не остаются следы от ножек мебели, каблуков

При срезе досок с боковой части твердость достигает до 30% у лиственных деревьев и до 40% у лесоматериалов, по сравнению с прочностью торцовых заготовок

При измерении прочности дерева по методу Бринелля необходимо учесть, что в среднем, шарик диаметром 10 мм входит в дерево с большой силой и происходит вдавливание с массой в 100 кг. В результате подсчётов определяется нанесенный при таком вдавливании ущерб и выделяется параметр прочности. Учитываются все нанесенные повреждения: вмятины, трещины, сколы. Для прочного дерева показатель Бринелля выше. В общих таблицах можно встретить значение, выраженное в МПа. Так, 10 МПа – это 1 НВ, что равняется показателю 10 Н/мм².

Отличия статических методов от динамических

Для измерения твердости дерева применяются разные типы методов:

  • Статистические (по Бринеллю, Роквеллу, Кнупу, Викерсу) представляют собой вдавливание сверхтвердого предмета в поверхность древесины. Этим предметом может служить алмазный конус или металлический шарик; их деформацией можно пренебречь;
  • В динамические методах (по Шору, Морину, Бауману, Шварцу, Граве) происходит создание в материале отпечатка шариком при ударной нагрузке;
  • В некоторых случаях твердость определяется по сопротивлению абразивному изнашиванию и шлифованию.

Графическая схема измерения твердости древесины по: а) Бриннелю; б) Роквеллю; в) Виккерсу.

Мербау (Merbau).

Плотность   800  Твердость   4,4  Стабильность   4

Произрастает  включает до 10 видов, встречающихся от восточного побережья Африки до Австралии и Полинезии

Породы представляют собой большие лиственные деревья с широкой кроной и массивными крепкими стволами, часто достигающие в высоту 30 и более метров. Длина окружности ствола составляет до 1,5 метров. Ствол дерева часто искривленный, короткий и испещренный желобками.Сердцевина дерева резко отличается от светло-желтой заболони. В свежеспиленном виде сердцевина желтая или оранжево-коричневая, но с течением времени ее цвет изменяется до бронзового либо темно-красного. С годами под воздействием климатических условий древесина приобретает серебристо-серый оттенок, схожий с древесиной тика  Мербау называют железным деревом: паркет мербау устойчив к внешним механическим воздействиям, не подвергается выгоранию, отталкивает излишнюю влагу, совсем не подвержен гниению, устойчив к деформации и не рассыхается.

Что такое плотность древесины

Единицей измерения плотности древесины является гм/см3 или кг/м3 (в системе СИ). Этот показатель определяется по формуле: р = mb/Vb. Символ m обозначает массу материала, b – параметр влажности, Vb – объем влажного вещества. Выделяют следующие виды плотности древесины:

  1. Удельный вес (условная или базисная плотность): характеризует отношение массы сухого древесинного вещества к его объему.
  2. Объемный вес (средняя плотность): определяет отношение массы структурированного физического тела во влажном состоянии к его объему.

В древесине присутствует большое количество межклеточных пространств, называемых пустотами. Древесинное вещество получается при помощи спрессовывания дерева. В результате пустоты полностью исчезают. Плотность спрессованной древесины меньше удельного веса древесинного вещества. Чем выше величина этого показателя, тем прочнее материал. Древесина с большим удельным весом труднее поддается обработке и не пропитывается антисептиками.

Измерение плотности осуществляется по следующему алгоритму:

  1. Выдержать измеряемый образец до влажности не менее 11 %.
  2. Расчет размерных характеристик и веса деревянной заготовки.
  3. На основе проведенных измерений производится расчет объема древесины. Заготовка увлажняется в дистиллированной воде в течение 3 суток, пока ее толщина не увеличится на 0,1 мм.
  4. Повторно измеряются размер и вес увлажненной древесины. На основе новых данных производится расчет максимального объема.
  5. Заготовка высушивается и повторно взвешивается. Масса сухого образца делится на максимальный объем. Результат вычислений будет являться базисной плотностью.
  6. Повторно измеряется масса сухой заготовки. На основе этих значений вычисляется удельный вес древесины.

Алгоритм вычисления данного показателя указан в ГОСТ 16483.1-84. Проводить измерения рекомендуется на заготовках в форме прямоугольной линзы. Длина основания измеряемого образца должна равняться 20 мм, ширина – 20 мм, высота – 30 мм. Грани заготовки необходимо тщательно обработать перед измерением плотности древесины.

ГОСТ 16483.1-84 Древесина. Метод определения плотности

1 файл 197.93 KB В большинстве стран Европы, вместо плотности древесины, используется показатель прироста. Он характеризует среднюю толщину слоев роста. Этот параметр используется при расчете величины изменения объема дерева в течение некоторого промежутка времени. Главным преимущества параметра прироста является легкость расчета, что позволит снизить затраты на проведение математических измерений. Согласно мнению профессиональных специалистов, этот параметр не характеризует физические свойства древесины. Поэтому он не связан с плотностью вещества. В Российской Федерации показатель прироста используется центрами по экспертизе и стандартизации лесоматериалов.

Основные хвойные породы

Из хвойных пород особо следует выделить сосну, которая занимает порядка 16 % площади всех лесных массивов России. Наибольшее распространение получила так называемая сосна обыкновенная, в основной своей массе произрастающая в Крыму и на Кавказе. Древесину этой породы относят к разряду хорошо поддающихся обработке мягких материалов и чаще всего применяют для изготовления окон, дверей, а также других элементов строений (лестничных маршей, например).

Ещё одна из представительниц этой группы – ель (пихта) – занимает до 12 процентов всех покрытых лесом российских площадей и широко применяется в народном хозяйстве. Материал хвойной ели по причине его повышенной сучковатости поддаётся обработке с большим трудом, но, несмотря на это, он привлекает пользователя однородностью структуры, приятным белым оттенком и малым содержанием смолистых веществ.

Этот сорт часто востребован при изготовлении строительных блоков, половых досок, наличников и плинтусов. Отборная древесина ели может применяться и при производстве бытовой мебели с целью декорирования жилых интерьеров. Из её коры научились изготавливать дубильные материалы, широко применяемые в кожевенной промышленности.

Лиственница очень распространена в нашей стране и занимает большую часть лесных насаждений. Её материал обладает прекрасными физическими характеристиками и по своей плотности и прочности заметно превосходит те же показатели для сосны. Кроме того, волокна лиственницы практически не поддаются гниению и обеспечивают изделиям из этого материала высокие прочностные показатели.

Сферы использования древесины лиственницы широки. Она применяется при сооружении гидротехнических конструкций, при изготовлении свай, шпал, телефонных столбов и опорных стоек для рудников. Ещё один представитель хвойных пород (кедр) очень схож по своим свойствам с елью и может применяться для изготовления шпал, стоек, мебели и карандашей.

Древесинный материал тиса ценится за свой привлекательный внешний вид, позволяющий использовать его при изготовлении элитных образцов мебели, а также при отделке интерьеров помещений. К категории хвойной древесины следует отнести и знакомый многим можжевельник.

Твердость древесины

Твердость дерева по Бриннелю

Твердость  дерева определяется еще по шкале Бриннеля. Измерения твердости дерева по Бриннелю проводятся при влажности дерева составляющей 12%. Метод Бриннеля заключается в том, что на шарик диаметром в один сантиметр оказывается давление с постоянной определенной силой и определенный промежуток времени. И по тому, какая вмятина при этом образовалась, и судят о твердости дерева. Чем вмятина меньше, тем твердость больше. Чаще всего методом Бриннеля пользуются для определения твердости таких материалов как паркет, доски из массива и других материалов из дерева, предназначенных для укладки пола. В принципе и первые два способа определения твердости дерева и метод Бриннеля показывают одинаковые результаты, только единицы измерения разные. Ниже представлена сводная таблица твердости дерева по первым двум способам (единица измерения переведена в проценты) и по методу Бриннеля.

Твердость

Такая характеристика, как твердость будет зависеть от породы. Древесина по этому параметру классифицируется на отдельные группы, среди них:

· материалы средней твердости;

· мягкая древесина;

· очень мягкая;

· очень твердая;

· твердая;

· твердая как кость.

Твердость древесины определяется в Америке и Европе по разным шкалам. В России используется шкала Бринелля. У осины описываемый параметр составляет 4,1, у полевого клена – 4,2. Самая высокая твердость свойственна падуку, в данном случае она составляет 8.

Суть метода определения твердости заключается в вдавливании шарика в поверхность с силой 100 кг. По диаметру лунки и характеру повреждения определяется твердость. Если древесина имеет более высокий коэффициент твердости, то она окажется крепче и надежнее пород с меньшим показателем.

Знакомясь с механическими свойствами древесины, вы сможете понять, что изменения в твердости будут происходить во время работы с заготовками. Например, твердость будет меняться в зависимости от распила. Используя радиальный распил, вы почувствуете более высокую твердость, чем при тангенциальной обработке материала.

Упругость древесины

Упругостью древесины называется ее способность изменять (в известных пределах) свою форму под действием внешнего усилия и возвращаться к первоначальной форме после прекращения этого воздействия.

Упругость древесины — способность возвращаться к первоначальной форме после прекращения воздействия нагрузки

При кратковременной растягивающей нагрузке вдоль волокон древесина до определенного предела ведет себя практически совершенно упруго, в ней возникают преимущественно упругие деформации. То есть, деформация, вызванная растяжением, исчезает, как только снимается нагрузка.

Основным показателем деформативности служит коэффициент пропорциональности – модуль упругости Е – гипотетическое напряжение в Н/мм2, при котором длина испытываемого стержня увеличивается вдвое. Модуль упругости Е может колебаться в значительных пределах даже для одних и тех же пород древесины. Заметное влияние на него оказывает влажность.

Модуль упругости при растяжении и сжатии фактически одинаков, так же, как и при изгибе.  

Древесина Расчетная величина Е вдоль волокон, Н/мм2 (кг/см2 )
Европейская хвойная 10000 (100000)
Дуб, бук 12500 (125000)

При действия усилия под углом к направлению волокон, по мере увеличения угла, модуль упругости Е уменьшается. При усилиях, действующих поперек волокон, деформации из-за трубчатого строения клеток значительно больше, чем при действии вдоль волокон, а значит, значительно уменьшается модуль упругости.  Чем больше модуль упругости, тем более жесткая древесина.

В строительной практике устанавливается средняя величина модуля упругости Е в направлении поперек волокон, которая для хвойных пород равна 300 МПа (Н/мм2), а для лиственных – 600 МПа (Н/мм2).  Следовательно, модуль упругости вдоль волокон примерно в 20 раз больше, чем поперек. 

Проектировщику модуль упругости Е древесины необходимо знать при расчете конструкций по второй группе предельных состояний — состояний, при которых нарушается нормальная эксплуатация сооружений, конструкций или исчерпывается ресурс их долговечности вследствие появления недопустимых деформаций (прогибов, трещин), колебаний и иных нарушений, требующих временной приостановки эксплуатации сооружения и выполнения его ремонта. То есть, вторая группа определяется непригодностью конструкций к нормальной эксплуатации. 

Возможны случаи, когда конструкция не потеряла несущую способность, т.е. удовлетворяет требованиям первой группы предельных состояний, но ее деформации, например, прогибы таковы, что нарушают технологический процесс или нормальные условия нахождения людей в помещении. 

При расчете по второй группе предельных состояний определяется максимальный прогиб fmax в элементе конструкции. Как правило, это однопролетная разрезная балка постоянного сечения. Максимальный прогиб зависит от того, чем нагружена балка (сосредоточенной силой Q, распределенной нагрузкой q или моментом M), и от того, какие опоры на концах балки (подвижный или неподвижный шарнир, жесткая заделка или свободный конец), то есть, от расчетной схемы балки. 

Значение максимального прогиба fmax для каждого конкретно случая  можно найти в любом справочнике по строительным конструкциям. Если под рукой нет такого справочника, то значение прогиба можно рассчитать по универсальной формуле, найдя предварительно нормативное значение максимального момента Мн:

fmax = Mнl2 / 10EJx     

где:   

Мн — нормативное значение максимального изгибающего момента;

l — пролет балки (расстояние между опорами);

Jx — момент инерции сечения, для прямоугольного сечения равен bh3/12;

Е — модуль упругости материала конструкции.

Поскольку древесина состоит в основном из полимеров с длинными гибкими цепными молекулами, ее деформативность зависит от продолжительности воздействия нагрузок.  

Упругие свойства древесины поперек волокон используются главным образом в сочетании с другим свойством, с его вязкостью – способностью дерева держать гвозди, костыли, шурупы. И это ценное качество дерева не удается воспроизвести ни в одном из современных материалов. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдергиванию гвоздя. Усилие, необходимое для выдергивания гвоздя, забитого в торец образца, меньше усилия, прилагаемого к гвоздю, забитому поперек волокон.

С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается. Усилия, необходимые для выдергивания шурупов (при прочих равных условиях), больше, чем для выдергивания гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву. 

Состав

При изучении вопроса о древесине обязательно необходимо ознакомиться с ее составом. В ней содержатся органические вещества, в которые входят:

· азот;

· водород;

· углерод;

· кислород.

Элементарный химический состав у разных пород остается почти одинаковым. Абсолютно сухой материал будет содержать углерод в объеме 49,5 %, 6,3 % водорода и 44,2 % кислорода с азотом. Последний содержится в материале в объеме 0,12 %. Элементарный химический состав древесины в области ветвей и ствола почти не отличается. Условия произрастания тоже никак не влияют на содержание основных элементов.

Помимо органических веществ, в древесине имеются минеральные соединения, которые дают при сгорании золу. Количество упомянутого элемента достигает 1,7 %. У отдельных пород объем золы может быть выше и составляет 3,5 %. У одной и той же породы количество золы будет зависеть от части дерева, условий произрастания и возраста, а также положения в стволе.

Больше золы получается при сжигании листьев и коры, а стволовая древесина дуба дает примерно 0,35 %. Древесина ветвей содержит больше золы, чем древесина ствола. В составе золы соли щелочноземельных металлов. Если речь идет о древесине сосны, то в золе, а также в золе березы и ели содержатся соли кальция в объеме 40 %.

По химическому составу ранняя и поздняя древесины почти одинаковы, это относится к содержанию гемицеллюлозы, лигнина и целлюлозы. Ранняя древесина содержит больше веществ, которые растворяются в эфире и воде. Это особенно свойственно лиственнице.

По высоте ствола химический состав меняется мало. В составе дуба не обнаружено почти ощутимых различий по высоте. У осины, ели и сосны в возрасте спелости обнаружено незначительное увеличение содержания целлюлозы.

Сферы применения

Благодаря своим свойствам ценные породы широко используется в деревообрабатывающей промышленности, строительстве. Особенно часто с ними работают плотники. Также применяется для производства товаров для дома, шкатулок, кухонной утвари, оружия.

Это также полезное сырье для создания различного спортивного инвентаря, бочек, ящиков, скамеек, порогов, игрушек.

Это лишний неполный список тех областей, в которых задействую ценные породы.

Ценные породы широко применяются в мебельной, фармакологической, военной и многих других сферах. Такие деревья отличаются не только привлекательным видом, но и уникальными характеристиками. Именно поэтому их стоимость выше, чем обычных пород.

Что такое плотность древесины

Единицей измерения плотности древесины является гм/см3 или кг/м3 (в системе СИ). Этот показатель определяется по формуле: р = mb/Vb. Символ m обозначает массу материала, b – параметр влажности, Vb – объем влажного вещества. Выделяют следующие виды плотности древесины:

  1. Удельный вес (условная или базисная плотность): характеризует отношение массы сухого древесинного вещества к его объему.
  2. Объемный вес (средняя плотность): определяет отношение массы структурированного физического тела во влажном состоянии к его объему.

В древесине присутствует большое количество межклеточных пространств, называемых пустотами. Древесинное вещество получается при помощи спрессовывания дерева. В результате пустоты полностью исчезают. Плотность спрессованной древесины меньше удельного веса древесинного вещества. Чем выше величина этого показателя, тем прочнее материал. Древесина с большим удельным весом труднее поддается обработке и не пропитывается антисептиками.

Измерение плотности осуществляется по следующему алгоритму:

  1. Выдержать измеряемый образец до влажности не менее 11 %.
  2. Расчет размерных характеристик и веса деревянной заготовки.
  3. На основе проведенных измерений производится расчет объема древесины. Заготовка увлажняется в дистиллированной воде в течение 3 суток, пока ее толщина не увеличится на 0,1 мм.
  4. Повторно измеряются размер и вес увлажненной древесины. На основе новых данных производится расчет максимального объема.
  5. Заготовка высушивается и повторно взвешивается. Масса сухого образца делится на максимальный объем. Результат вычислений будет являться базисной плотностью.
  6. Повторно измеряется масса сухой заготовки. На основе этих значений вычисляется удельный вес древесины.

Алгоритм вычисления данного показателя указан в ГОСТ 16483.1-84. Проводить измерения рекомендуется на заготовках в форме прямоугольной линзы. Длина основания измеряемого образца должна равняться 20 мм, ширина – 20 мм, высота – 30 мм. Грани заготовки необходимо тщательно обработать перед измерением плотности древесины.

ГОСТ 16483.1-84 Древесина. Метод определения плотности

1 файл   197.93 KB

В большинстве стран Европы, вместо плотности древесины, используется показатель прироста. Он характеризует среднюю толщину слоев роста. Этот параметр используется при расчете величины изменения объема дерева в течение некоторого промежутка времени. Главным преимущества параметра прироста является легкость расчета, что позволит снизить затраты на проведение математических измерений. Согласно мнению профессиональных специалистов, этот параметр не характеризует физические свойства древесины. Поэтому он не связан с плотностью вещества. В Российской Федерации показатель прироста используется центрами по экспертизе и стандартизации лесоматериалов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector